Hopf coactions on commutative algebras generated by a quadratically independent comodule

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piecewise Principal Coactions of Co-Commutative Hopf Algebras

Principal comodule algebras can be thought of as objects representing principal bundles in non-commutative geometry. A crucial component of a principal comodule algebra is a strong connection map. For some applications it suffices to prove that such a map exists, but for others, such as computing the associated bundle projectors or Chern–Galois characters, an explicit formula for a strong conne...

متن کامل

Cyclic Homology of Hopf Comodule Algebras and Hopf Module Coalgebras

In this paper we construct a cylindrical module A♮H for an Hcomodule algebra A, where the antipode of the Hopf algebra H is bijective. We show that the cyclic module associated to the diagonal of A♮H is isomorphic with the cyclic module of the crossed product algebra A ⋊H. This enables us to derive a spectral sequence for the cyclic homology of the crossed product algebra. We also construct a c...

متن کامل

Commutative combinatorial Hopf algebras

We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its noncommutative dual is realized in three different ways, in particular, as the Grossman–Larson algebra of heap-ordered trees. ...

متن کامل

Actions of Commutative Hopf Algebras

We show that actions of finite-dimensional semisimple commutative Hopf algebras H on //-module algebras A are essentially group-gradings. Moreover we show that the centralizer of H in the smash product A # H equals A" ® H. Using these we invoke results about group graded algebras and results about centralizers of separable subalgebras to give connections between the ideal structure of A, A and ...

متن کامل

Coactions of Hopf-C-algebras and equivariant E-theory

We define and study an equivariant E-theory with respect to coactions of Hopf C-algebras; we prove the Baaj-Skandalis duality in this setting. We show that the corresponding equivariant KK-theory of Baaj and Skandalis enjoys an universal property. In the appendix, we look at the different ways of expressing equivariant stability for a functor, and prove an equivariant BrownGreen-Rieffel stabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2016

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927872.2016.1236934